- $\binom{n}{m} = \binom{n}{n-m}$
- $\binom{n}{m} + \binom{n}{m+1} = \binom{n+1}{m+1}$
- $\sum_{m=r}^n \binom{m}{r} = \binom{n+1}{r+1}$
- $\sum_{m=0}^n \binom{n}{m} = 2^n$
- $\binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}$
- $m \binom{n}{m} = n \binom{n-1}{m-1}$
- $\sum_{r=0}^k \binom{n}{r} \binom{m}{k-r} = \binom{n+m}{k}$
- $\sum_{i=0}^n \binom{n}{i}^2 = \sum_{i=0}^n \binom{n}{i} \binom{n}{n-i} = \binom{2n}{n}$
封闭形式:
$\frac{1}{(1-x)^{n+1}} = \sum_{k=0}^\infty \binom{n+k}{n} x^k$
- $\frac{1}{(1-x)^{n+1}} = (1-x)^{-(n+1)} = \sum_{k=0}^\infty \binom{-n-1}{k} (-x)^k = \sum_{k=0}^\infty (-1)^k \binom{k+n}{k} (-x)^k = \sum_{k=0}^\infty \binom{n+k}{n} x^k$
$\frac{1}{\sqrt{1-4x}} = \sum_{k=0}^\infty \binom{2k}{k} x^k$
$\frac{1 - \sqrt{1-4x}}{2x} = \sum_{k\ge 0} \frac{1}{k+1} \binom{2k}{k} x^k$